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Discontinuous Galerkin (DG) method

Why to use DG method?

For time-dependent nonlinear hyperbolic equations, the exact solution

always develops discontinuities as time evolves.

Features of DG method
High order accuracy: in obtaining arbitrary high order accuracy

approximation to the exact solution within smooth regions

High resolution: in producing sharp and non-oscillatory

discontinuity transitions near discontinuous solutions, including

shocks and contact discontinuities,

Example 1: Burgers equation

{
ut + (u2/2)x = 0
u(x ,0) = 1/2 + sin x

(1)
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Discontinuous Galerkin (DG) method

Accuracy test

Table: The numerical errors and orders when using P2

polynomials of N cell at T = 0.3

N L1 error Order L∞ error Order
20 1.09E-04 – 9.09E-04 –
40 1.34E-05 3.03 1.48E-04 2.62
80 1.63E-06 3.04 2.07E-05 2.84

160 2.01E-07 3.02 2.78E-06 2.90
320 2.50E-08 3.01 3.61E-07 2.94
640 3.13E-09 3.00 4.60E-08 2.97
1280 3.91E-10 3.00 5.81E-09 2.99
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Discontinuous Galerkin (DG) method

Test with shocks
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Figure: P2 polynomials, T = 1.5, N = 320.
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Discontinuous Galerkin (DG) method

Example 2: Euler equation

Consider the Sod problem

ut + f(u)x = 0,

where

u =

 ρ
ρv
E

 , f(u) =

 ρv
ρv2 + p

v(E + p)

 ,

and
E =

p
γ − 1

+
1
2
ρv2, γ = 1.4, x ∈ [−5,5], t = 2.

The initial condition is

(ρ(x ,0), v(x ,0), p(x ,0)) =

{
(1, 0, 1), if x ≤ 0
(0.125, 0, 0.1), if x > 0
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Discontinuous Galerkin (DG) method

Density
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Figure: The computed density using P1 polynomials of 100 cells at T = 2.
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Discontinuous Galerkin (DG) method

Pressure
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Figure: The computed pressure using P1 polynomials of 100 cells at T = 2.
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Discontinuous Galerkin (DG) method

The design of DG method

Model equation

Consider the one-dimensional nonlinear conservation laws

ut + f (u)x = 0 (2a)
u(x ,0) = u0(x) (2b)

Step 1: Partition of the domain
Use the following mesh

0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 2π

to cover the computational domain I = (0,2π), consisting of cells

Ij = (xj− 1
2
, xj+ 1

2
), j = 1, . . . ,N.

Cell centers and cell lengths

xj = (xj− 1
2

+ xj+ 1
2
)/2 and hj = xj+ 1

2
− xj− 1

2

and h = max1≤j≤N hj .
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Discontinuous Galerkin (DG) method

The design of DG method

Step 2: Weak formulation

Multiply arbitrary smooth functions, v and w on the RHS of (5), then

integrate on cell Ij and use integration by parts to obtain∫
Ij

utvdx −
∫

Ij
f (u)vxdx + f (u(xj+ 1

2
, t))v(xj+ 1

2
)− f (u(xj− 1

2
, t))v(xj− 1

2
) = 0

(3a)∫
Ij

u(x ,0)wdx −
∫

Ij
u0(x)wdx = 0

(3b)

The finite element space is

V k
h =

{
v ∈ L2(I) : v |Ij ∈ Pk (Ij ), j = 1, . . . ,N

}
where Pk (Ij ) denotes the set of polynomials of degree up to k defined

on the cell Ij .
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Discontinuous Galerkin (DG) method

The design of DG method

Step 3: DG scheme
Find the unique function uh(x , t) ∈ V k

h and uh(x ,0) such that∫
Ij

(uh)tvhdx −
∫

Ij
f (uh)(vh)xdx + f̂j+ 1

2
(vh)−

j+ 1
2
− f̂j− 1

2
(vh)+

j− 1
2

= 0 (4a)∫
Ij

uh(x ,0)whdx −
∫

Ij
u0(x)whdx = 0 (4b)

holds for all vh, wh ∈ V k
h and j = 1, . . . ,N.

Monotone numerical flux

f̂j+ 1
2

= f̂
(

(uh)−
j+ 1

2
, (uh)+

j+ 1
2

)
Consistency
Lipschitz continuity
Monotonicity
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Discontinuous Galerkin (DG) method

Runge–Kutta DG method

Semi-discrete scheme
After using the DG method, we get

ut = L(u, t)

Time discretization
Adopt the explicit third-order TVD Runge–Kutta time discretization
[Shu & Osher, JCP, 88’]

u(1) = un + ∆tL(un, tn)

u(2) =
3
4

un +
1
4

(
u(1) + ∆tL(u(1), tn + ∆t)

)
un+1 =

1
3

un +
2
3

(
u(2) + ∆tL(u(2), tn +

1
2

∆t)
)

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

Discontinuous Galerkin (DG) method

Local DG (LDG) method

Introduction of the method
The LDG was first proposed in the framework of second order
convection diffusion equations [Cockburn & Shu, SINUM, 98’]

Basic idea
Rewrite the equation into a first order system by introducing
auxiliary variables

Apply the DG method on the system

Criteria of numerical fluxes
Guarantee stability of the scheme

Guarantee local solvability of all the auxiliary variables
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Discontinuous Galerkin (DG) method

Advantages of DG and LDG methods

Arbitrary high order accuracy theoretically

Flexible to h − p adaptivity

Extremely local date communications

Capacity in handing complicated geometry and boundary

conditions

Provable nonlinear L2 stability: [Jiang & Shu, Math. Comp., 94’]

High parallel efficiency
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Superconvergence

Types of superconvergence

I : Negative norm, post-processing

‖u − K ν,l
H ? uh‖ ≤ Hν

ν! C1‖u‖Hν + C2
∑
|α|≤l ‖∂αH (u − uh)‖H−l

‖v‖−l = supφ∈C∞0
(v ,φ)
‖φ‖Hl

II : Towards special projection of the exact solution

‖Phu − uh‖ ≤ Chk+1+α

α could be 1
2 or 1

III : At Radau points, and cell averages(
1
N

∑N
j=1 |(u − uh)(xj )|2

) 1
2 ≤ Chk+2

‖u − uh‖ ≤ Chk+2
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Superconvergence

Approaches

Fourier type: quantitative analysis

Uniform meshes

Periodic boundary conditions

Piecewise linear elements

Finite element type: qualitative analysis

Arbitrary nonuniform regular meshes

Periodic boundary conditions and initial-boundary value

problems

Arbitrary piecewise polynomials of degree k
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Superconvergence

Some superconvergence results

Linear hyperbolic equations

Negative norm, post-processing
(2k + 1)th, [Cockburn, Luskin, Shu & Süli, Math. Comp., 03’],
[Ryan, Shu & Atkins, SISC, 05’], [Mirzaee, Ji, Ryan & Kirby,
SINUM, 11’]

Towards special projection of the exact solution
Fourier type, (k + 3

2 )th: [Cheng & Shu, JCP, 08’]
Finite element type, (k + 2)th: [Yang & Shu, SINUM, 12’]

At Radau points, and cell averages
Fourier type: (k + 2)th at Radau points and (2k + 1)th at downwind
point [Adjerid et al., CMAME, 02’, steady-state], [Zhong & Shu,
CMAME, 11’]
Finite element type

(k + 2)th at Radau points, cell averages: [Yang & Shu, SINUM, 12’]
Additional (2k + 1)th at downwind point, cell averages and pointwise
(k + 1)th derivative superconvergence: [Cao, Zhang & Zou, SINUM,
submitted]
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Superconvergence

Some superconvergence results

Linear convection diffusion equations

Negative norm, post-processing
(2k + 1)th, [Ji, Xu & Ryan, Math. Comp., 12’]

Towards special projection of the exact solution
Fourier type: (k + 3

2 )th, [Cheng & Shu, Comput. Struct., 09’]
Finite element type

(k + 3
2 )th: [Cheng & Shu, SINUM, 10’]

(k + 2)th: [Yang & Shu, SINUM, submitted]

At Radau points, and cell averages
Fourier type: (k + 2)th at Radau points and (2k + 1)th at downwind
point [Guo, Zhong & Qiu, JCP, 13’]
Finite element type

(k + 2)th at Radau points: [Yang & Shu, SINUM, submitted]
(2k + 1)th cell averages and pointwise (k + 1)th derivative
superconvergence: [Cao & Zhang, SINUM, submitted]

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

Superconvergence

Some superconvergence results

Linear convection diffusion equations

Negative norm, post-processing
(2k + 1)th, [Ji, Xu & Ryan, Math. Comp., 12’]

Towards special projection of the exact solution
Fourier type: (k + 3

2 )th, [Cheng & Shu, Comput. Struct., 09’]
Finite element type

(k + 3
2 )th: [Cheng & Shu, SINUM, 10’]

(k + 2)th: [Yang & Shu, SINUM, submitted]

At Radau points, and cell averages
Fourier type: (k + 2)th at Radau points and (2k + 1)th at downwind
point [Guo, Zhong & Qiu, JCP, 13’]
Finite element type

(k + 2)th at Radau points: [Yang & Shu, SINUM, submitted]
(2k + 1)th cell averages and pointwise (k + 1)th derivative
superconvergence: [Cao & Zhang, SINUM, submitted]

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

Superconvergence

Some superconvergence results

Linear convection diffusion equations

Negative norm, post-processing
(2k + 1)th, [Ji, Xu & Ryan, Math. Comp., 12’]

Towards special projection of the exact solution
Fourier type: (k + 3

2 )th, [Cheng & Shu, Comput. Struct., 09’]
Finite element type

(k + 3
2 )th: [Cheng & Shu, SINUM, 10’]

(k + 2)th: [Yang & Shu, SINUM, submitted]

At Radau points, and cell averages
Fourier type: (k + 2)th at Radau points and (2k + 1)th at downwind
point [Guo, Zhong & Qiu, JCP, 13’]
Finite element type

(k + 2)th at Radau points: [Yang & Shu, SINUM, submitted]
(2k + 1)th cell averages and pointwise (k + 1)th derivative
superconvergence: [Cao & Zhang, SINUM, submitted]

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

Superconvergence

Some superconvergence results

Higher order PDEs

Towards special projection of the exact solution
Finite element type

linearized KdV equations, (k + 3
2 )th: [Hufford & Xing, JCAM, 14’]

linear fourth-order equations, (k + 3
2 )th: [Meng, Shu & Wu, IMANUM,

12’]

Nonlinear hyperbolic equations

Negative norm, post-processing
(2k + 1)th, [Ji, Xu & Ryan, JSC, 13’]

At Radau points
(k + 2)th at Radau points and (2k + 1)th at downwind point:
[Adjerid & Massey, CMAME, 06’, steady-state]

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

Superconvergence

Some superconvergence results

Higher order PDEs

Towards special projection of the exact solution
Finite element type

linearized KdV equations, (k + 3
2 )th: [Hufford & Xing, JCAM, 14’]

linear fourth-order equations, (k + 3
2 )th: [Meng, Shu & Wu, IMANUM,

12’]

Nonlinear hyperbolic equations

Negative norm, post-processing
(2k + 1)th, [Ji, Xu & Ryan, JSC, 13’]

At Radau points
(k + 2)th at Radau points and (2k + 1)th at downwind point:
[Adjerid & Massey, CMAME, 06’, steady-state]

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

DG scheme

Problem

We consider the discontinuous Galerkin (DG) method applied to
one-dimensional scalar conservation laws

ut + f (u)x = g(x , t), (5a)
u(x ,0) = u0(x), (5b)

here g(x , t) and u0(x) are smooth functions and assume that
f (u) ∈ C3.

Our goal

To study the superconvergence (towards special projection of the
exact solution) of the DG method for nonlinear hyperbolic
conservation laws

Xiong Meng Superconvergence of DG methods
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DG scheme

Notation

I = (0,2π), Ij = (xj− 1
2
, xj+ 1

2
), where

0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 2π.

xj = (xj− 1
2

+ xj+ 1
2
)/2, hj = xj+ 1

2
− xj− 1

2
: The cell center and cell length;

p−
j+ 1

2
and p+

j+ 1
2
: the left and right limit of p at xj+ 1

2
;

[[p]] = p+ − p− and {{p}} = 1
2 (p+ + p−): the jump and the mean of p at

each element boundary point;

Vh ≡ V k
h = {v ∈ L2(0,2π) : v |Ij ∈ Pk (Ij ), j = 1, · · · ,N}: finite element

space, where Pk (Ij ) denotes the set of polynomials of degree up to
k ≥ 1 defined on the cell Ij .
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DG scheme

DG scheme

Find the unique function uh = uh(t) ∈ Vh such that∫
Ij

(uh)tvhdx −
∫

Ij
f (uh)(vh)xdx + f̂j+ 1

2
(vh)−

j+ 1
2
− f̂j− 1

2
(vh)+

j− 1
2

(6)

=

∫
Ij

g(x , t)vhdx

holds for all vh ∈ Vh and all j = 1, · · · ,N.

Numerical flux f̂j+ 1
2

is chosen to be an upwind flux to achieve
superconvergence.
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Preliminaries

Functionals related to the L2 norm

B−j (F) =

∫
Ij
F(x)

x − xj−1/2

hj

d
dx

(
F(x)

x − xj

hj

)
dx ,

B+
j (F) =

∫
Ij
F(x)

x − xj+1/2

hj

d
dx

(
F(x)

x − xj

hj

)
dx .

Lemma

For any function F(x) ∈ C1 on Ij , we have

B−j (F) =
1

4hj

∫
Ij
F2(x)dx +

F2(xj+1/2)

4
, (7)

B+
j (F) = − 1

4hj

∫
Ij
F2(x)dx −

F2(xj−1/2)

4
. (8)
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Preliminaries

Projections and interpolation properties

L2 projection∫
Ij

(Phq(x)− q(x))vhdx = 0, ∀vh ∈ Vh.

Gauss-Radau projections P±h into Vh

∫
Ij

(P+
h q(x)− q(x))vhdx = 0, ∀vh ∈ Pk−1, (P+

h q)+
j− 1

2
= q(x+

j− 1
2
);

(9)∫
Ij

(P−h q(x)− q(x))vhdx = 0, ∀vh ∈ Pk−1, (P−h q)−
j+ 1

2
= q(x−

j+ 1
2
).

(10)

1 Orthogonality property for polynomials of degree up to k − 1
2 Exact collocation at one of the boundary points
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Preliminaries

Projections and interpolation properties

Denote by η = q(x)−Qhq(x) (Qh = Ph, or P±h ) the projection error,
then by Bramble-Hilbert Lemma and scaling argument, we have

‖η‖+ h‖ηx‖+ h1/2‖η‖Γh ≤ Chk+1. (11a)

Here and below, an unmarked norm ‖·‖ is the usual L2 norm defined
on the interval I, and

‖η‖2
Γh

=
N∑

j=1

((
η+

j+1/2

)2
+
(
η−j+1/2

)2
)
.

We also have
‖η‖∞ ≤ Chk+ 1

2 (11b)

The property (11b) is important for the a priori assumption.
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Preliminaries

Inverse properties

For any ph ∈ Vh, there exists a positive constant C independent of ph
and h, such that

(i) ‖∂xph‖ ≤ Ch−1‖ph‖;

(ii) ‖ph‖Γh ≤ Ch−1/2‖ph‖;

(iii) ‖ph‖∞ ≤ Ch−1/2‖ph‖.

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

Main results

e = u − uh, η = u −Qhu be the projection error, ξ = Qhu − uh.
For any t ∈ [0,T ] and x ∈ I, if f ′(u(x , t)) > 0, we choose Qh = P−h , if
f ′(u(x , t)) < 0, we take Qh = P+

h .

Theorem

Let u be the exact solution of the problem (5), which is assumed to be
sufficiently smooth, and assume that f ∈ C3 and |f ′(u)| is lower
bounded uniformly by any positive constant. Let uh be the numerical
solution of (7) with initial condition uh(·,0) = Qhu0 when the upwind
flux is used. If the finite element space V k

h (k ≥ 1) is used then for
small enough h there holds the following error estimate

‖ξ(·, t)‖ ≤ Chk+3/2 ∀t ∈ [0,T ], (12)

where C depends on the exact solution u, the final time T and the
maximum of |f (m)| (m = 1,2,3), but is independent of h.

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

We will only consider the case f ′(u(x , t)) ≥ δ > 0 ∀(x , t) ∈ I × [0,T ],
the case of f ′(u(x , t)) ≤ −δ < 0 is similar.

Choose f̂ = f (u−h ) on each cell interface and Qh = P−h on each cell
element, the initial condition is chosen as uh(·,0) = P−h u0.

The proofs are divided into FIVE steps as follows.
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Step 1

An important inequality of ξ

Error equation:∫
I
etvhdx =

N∑
j=1

∫
Ij

(f (u)− f (uh))(vh)xdx+
N∑

j=1

((f (u)−f (u−h ))[[vh]])j+ 1
2

for all vh ∈ Vh.

Take vh = ξ and define ξ = rj + Sj (x)(x − xj )/hj on each cell Ij ,
with rj = ξ(xj ) being a constant and Sj (x) ∈ Pk−1(Ij ).

We get the following inequality involving ξ

1
2

d
dt
‖ξ‖2 ≤ (C(e)+C?h−3‖e‖2

∞)‖ξ‖2 +C?hk+1‖S‖+Ch2k+3, (13)

where C(e) = C + C?h−1‖e‖∞.
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Step 2

The a priori assumption

To deal with the nonlinearity of the flux f (u) we shall make an a priori
assumption that, for small enough h, there holds

‖ξ‖ = ‖Qhu − uh‖ ≤ h2. (14)

Later we will justify this a priori assumption (14) for piecewise
polynomials of degree k ≥ 1.

Corollary

Suppose that the interpolation property (11b) is satisfied, then the a
priori assumption (14) implies that

‖e‖∞ ≤ Ch
3
2 and ‖ξ‖∞ ≤ Ch

3
2 . (15)

Proof. This follows from the inverse property (iii), the interpolation
property (11b) and triangle inequality.
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Step 2

The a priori assumption

Under this a priori assumption, we can first get a crude bound for ξ,
which is used to derive a sharp bound for et .

Corollary

If the a priori assumption (14) holds, we have the following error
estimates

‖e‖ ≤ Chk+1 and ‖ξ‖ ≤ Chk+1. (16)

Remark
This result can be viewed as a straightforward consequence of the
fully discrete DG method for solving conservation laws, see e.g.,
[Zhang & Shu, SINUM, 04’ and 10’].
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Step 3

Estimate of S

Lemma

Under the same conditions as in Theorem 2, if, in addition, the a priori
assumption (14) holds, we have

‖S‖ ≤ Ch‖et‖+ Chk+2, (17)

for any t ∈ [0,T ], where the positive constant C is independent of h
and the approximate solution uh.
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Step 4

Estimate of et

Lemma

Under the same conditions as in Theorem 2, if, in addition, the a priori
assumption (14) holds, we have

‖et‖ ≤ Chk+1 + C?h−
1
2

√∫ t

0
‖ξ(s)‖2ds, (18)

for any t ∈ [0,T ].
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Step 4

Final estimate of ξ

Collecting all the above results, employing (15) implied by the a priori
assumption (14) and by virtue of Young’s inequality, we obtain

1
2

d
dt
‖ξ(t)‖2 ≤ C1‖ξ(t)‖2 + C2

∫ t

0
‖ξ(s)‖2ds + C3h2k+3. (19)

Note that there holds the following identity

d
dt

∫ t

0
‖ξ(s)‖2ds = ‖ξ(t)‖2. (20)

Adding twice of (19) and (20) up, we arrive at

d
dt

(
‖ξ(t)‖2 +

∫ t

0
‖ξ(s)‖2ds

)
≤ C0

(
‖ξ(t)‖2 +

∫ t

0
‖ξ(s)‖2ds

)
+Ch2k+3,

where C0 = max(2C1 + 1,2C2) and C = 2C3 are positive constants
independent of h. By Gronwall’s inequality, we get

‖ξ(·, t)‖ ≤ Chk+3/2. (21)
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Step 4

Final estimate of ξ
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independent of h.
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Step 4

Final estimate of ξ

Collecting all the above results, employing (15) implied by the a priori
assumption (14) and by virtue of Young’s inequality, we obtain
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d
dt
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Adding twice of (19) and (20) up, we arrive at
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(
‖ξ(t)‖2 +

∫ t

0
‖ξ(s)‖2ds

)
≤ C0

(
‖ξ(t)‖2 +

∫ t

0
‖ξ(s)‖2ds

)
+Ch2k+3,

where C0 = max(2C1 + 1,2C2) and C = 2C3 are positive constants
independent of h. By Gronwall’s inequality, we get

‖ξ(·, t)‖ ≤ Chk+3/2. (21)
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Step 5

Justification of the a priori assumption

First of all, the a priori assumption is satisfied at t = 0 since
ξ(·,0) = 0. For piecewise polynomials of degree k (k ≥ 1), one can
choose h small enough such that Chk+3/2 < 1

2 h2, where C is a
constant in (12) determined by the final time T .

Define t? = sup{s ≤ T : ‖Qhu(t)− uh(t)‖ ≤ h2,∀t ∈ [0, s]}, then we
have ‖Qhu(t?)− uh(t?)‖ = h2 by continuity if t? < T . However, our
main result (21) implies that ‖Qhu(t?)− uh(t?)‖ ≤ Chk+3/2 < 1

2 h2,
which is a contradiction. Therefore, there always holds t? = T , and
thus the a priori assumption (14) is justified.
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Numerical examples

Time discretization: five stage, fourth order SSP Runge-Kutta method
CFL condition: ∆t = CFL h2. Initial condition: L2 projection.

Example 1

First we consider the following equation
ut + (u3/3 + u)x = g(x , t),
u(x ,0) = cos(x)

u(0, t) = u(2π, t)
(22)

where g(x , t) is given by

g(x , t) = −(2 + cos2(x + t)) sin(x + t).

The exact solution is

u(x , t) = cos(x + t).
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Numerical examples
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g(x , t) = −(2 + cos2(x + t)) sin(x + t).
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Table: The errors ξ and e for Example 1 when using P1 polynomials on a
uniform mesh of N cells. CFL = 0.5.

P1 N T = 1 T = 50 T = 500
L2 error order L2 error order L2 error order

ξ

20 2.10E-04 – 1.84E-04 – 2.45E-04 –
40 2.65E-05 2.99 2.73E-05 2.76 3.90E-05 2.65
80 3.31E-06 3.00 3.65E-06 2.90 5.10E-06 2.93

160 4.14E-07 3.00 4.61E-07 2.98 6.53E-07 2.97
320 5.17E-08 3.00 5.77E-08 3.00 8.21E-08 2.99

e

20 4.26E-03 – 4.26E-03 – 4.24E-03 –
40 1.06E-03 2.00 1.06E-03 2.00 1.06E-03 2.00
80 2.65E-04 2.00 2.66E-04 2.00 2.65E-04 2.00

160 6.64E-05 2.00 6.64E-05 2.00 6.64E-05 2.00
320 1.66E-05 2.00 1.66E-05 2.00 1.66E-05 2.00
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Table: The errors ξ and e for Example 1 when using P1 polynomials on a
nonuniform mesh of N cells. CFL = 0.5.

P1 N T = 1 T = 50 T = 500
L2 error order L2 error order L2 error order

ξ

20 5.86E-04 – 6.46E-04 – 6.21E-04 –
40 6.19E-05 3.24 5.86E-05 3.46 5.43E-05 3.51
80 1.18E-05 2.39 7.71E-06 2.93 8.03E-06 2.76

160 2.30E-06 2.37 7.81E-07 3.30 9.81E-07 3.03
320 4.65E-07 2.30 1.14E-07 2.78 1.21E-07 3.02

e

20 5.50E-03 – 4.98E-03 – 5.37E-03 –
40 1.30E-03 2.08 1.23E-03 2.01 1.28E-03 2.07
80 3.55E-04 1.88 3.52E-04 1.81 3.52E-04 1.86

160 8.73E-05 2.02 8.32E-05 2.08 8.36E-05 2.07
320 2.13E-05 2.03 2.10E-05 1.99 2.15E-05 1.96

Xiong Meng Superconvergence of DG methods



DG method and superconvergence Main results Brief proofs Numerical experiments Summary

Table: The errors ξ and e for Example 1 when using P2 polynomials on a
uniform mesh of N cells. CFL = 0.5.

P2 N T = 1 T = 50 T = 500
L2 error order L2 error order L2 error order

ξ

20 6.35E-06 – 6.70E-06 – 6.69E-06 –
40 4.12E-07 3.94 4.13E-07 4.02 4.13E-07 4.02
80 2.57E-08 4.00 2.57E-08 4.00 2.57E-08 4.00

160 1.61E-09 4.00 1.61E-09 4.00 1.61E-09 4.00
320 1.00E-10 4.00 1.00E-10 4.00 1.01E-10 3.99

e

20 1.07E-04 – 1.07E-04 – 1.07E-04 –
40 1.34E-05 3.00 1.34E-05 3.00 1.34E-05 3.00
80 1.67E-06 3.00 1.67E-06 3.00 1.67E-06 3.00

160 2.09E-07 3.00 2.09E-07 3.00 2.09E-07 3.00
320 2.61E-08 3.00 2.61E-08 3.00 2.61E-08 3.00
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Table: The errors ξ and e for Example 1 when using P3 polynomials on a
uniform mesh of N cells. CFL = 0.1.

P3 N T = 10 T = 50 T = 500
L2 error order L2 error order L2 error order

ξ

10 2.82E-06 – 1.81E-06 – 1.98E-06 –
20 5.47E-08 5.69 5.67E-08 5.00 5.66E-08 5.13
40 1.74E-09 4.97 1.74E-09 5.02 1.74E-09 5.02
80 5.42E-11 5.00 5.42E-11 5.00 5.49E-11 4.99

e

10 3.31E-05 – 3.30E-05 – 3.30E-05 –
20 2.07E-06 4.00 2.07E-06 4.00 2.07E-06 4.00
40 1.29E-07 4.00 1.29E-07 4.00 1.29E-07 4.00
80 8.07E-09 4.00 8.07E-09 4.00 8.07E-09 4.00
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Example 2

In this example, we solve the following equation
ut + (u3/3)x = g(x , t),
u(x ,0) = cos(x)

u(0, t) = u(2π, t)
(23)

where g(x , t) is given by

g(x , t) = −(1 + cos2(x + t)) sin(x + t).

The exact solution is

u(x , t) = cos(x + t).
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Table: The errors ξ and e for Example 2 when using both P1 and P2

polynomials on a nonuniform mesh of N cells. CFL = 0.5. T = 1.

Pk k = 1 k = 2

N ξ e ξ e
L2 error order L2 error order L2 error order L2 error order

40 2.28E-04 – 1.08E-03 – 4.29E-06 – 1.40E-05 –
80 4.52E-05 2.33 2.75E-04 1.98 3.25E-07 3.72 1.77E-06 2.98

160 7.95E-06 2.51 6.85E-05 2.01 2.24E-08 3.86 2.18E-07 3.02
320 1.49E-06 2.42 1.72E-05 1.99 1.90E-09 3.56 2.77E-08 2.98
640 2.63E-07 2.50 4.30E-06 2.00 1.66E-10 3.52 3.48E-09 2.99
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Example 3

We consider the following Burgers equation
ut + (u2/2)x = g(x , t),
u(x ,0) = cos(x)

u(0, t) = u(2π, t)
(24)

where g(x , t) is given by

g(x , t) = −(1 + cos(x + t)) sin(x + t).

The exact solution is

u(x , t) = cos(x + t).
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Table: The errors ξ and e for Example 3 when using P1 polynomials on a
uniform mesh of N cells. CFL = 0.5.

P1 N T = 1 T = 50 T = 500
L2 error order L2 error order L2 error order

ξ

20 6.31E-04 – 1.61E-03 – 1.64E-03 –
40 9.03E-05 2.81 2.74E-04 2.56 2.65E-04 2.63
80 1.25E-05 2.85 3.76E-05 2.86 4.24E-05 2.65

160 1.82E-06 2.78 8.15E-06 2.21 6.67E-06 2.67
320 2.59E-07 2.81 1.50E-06 2.44 1.04E-06 2.68

e

20 4.26E-03 – 4.48E-03 – 4.49E-03 –
40 1.06E-03 2.00 1.09E-03 2.04 1.09E-03 2.04
80 2.66E-04 2.00 2.68E-04 2.03 2.69E-04 2.02

160 6.64E-05 2.00 6.68E-05 2.00 6.67E-05 2.01
320 1.66E-05 2.00 1.67E-05 2.00 1.66E-05 2.00
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Table: The errors ξ and e for Example 3 when using P2 polynomials on a
uniform mesh of N cells. CFL = 0.5.

P2 N T = 1 T = 50 T = 500
L2 error order L2 error order L2 error order

ξ

20 7.57E-05 – 9.23E-05 – 1.05E-04 –
40 8.19E-06 3.21 8.76E-06 3.40 9.08E-06 3.53
80 9.76E-07 3.07 1.01E-06 3.11 9.11E-07 3.32

160 8.72E-08 3.48 9.03E-08 3.49 8.81E-08 3.37

e

20 1.20E-04 – 1.31E-04 – 1.31E-04 –
40 1.47E-05 3.03 1.49E-05 3.13 1.49E-05 3.13
80 1.77E-06 3.05 1.78E-06 3.07 1.78E-06 3.07

160 2.15E-07 3.04 2.15E-07 3.04 2.15E-07 3.04
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Table: The errors ξ and e for Example 3 when using P3 polynomials on a
uniform mesh of N cells. CFL = 0.2.

P3 N T = 1 T = 50 T = 500
L2 error order L2 error order L2 error order

ξ

10 1.10E-05 – 1.56E-05 – 1.50E-05 –
20 3.94E-07 4.81 4.16E-07 5.23 4.14E-07 5.18
40 1.49E-08 4.72 1.29E-08 5.01 1.27E-08 5.02
80 5.39E-10 4.79 3.92E-10 5.04 3.91E-10 5.02

e

10 3.53E-05 – 3.63E-05 – 3.51E-05 –
20 2.11E-06 4.06 2.11E-06 4.10 2.11E-06 4.05
40 1.30E-07 4.02 1.30E-07 4.02 1.30E-07 4.02
80 8.09E-09 4.01 8.08E-09 4.01 8.08E-09 4.01
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Example 4: two-dimensional case

Consider {
ut + (u3/3)x + (u3/3)y = g(x , y , t)
u(x , y ,0) = sin(x + y)

(25)

where
g(x , y , t) = −2 cos3(x + y − 2t)

The exact solution is

u(x , y , t) = sin(x + y − 2t)
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Table: The errors and orders when using Q1 and Q2 polynomials on a
nonuniform mesh of N × N cells. CFL = 0.2. T = 1

Qk k = 1 k = 2

N × N ξ e ξ e
L2 error Order L2 error Order L2 error Order L2 error Order

10× 10 1.56E-02 – 2.44E-02 – 2.12E-04 – 1.23E-03 –
20× 20 2.89E-03 2.57 6.26E-03 2.08 8.89E-06 4.43 1.57E-04 2.87
40× 40 5.29E-04 2.53 1.58E-03 2.05 4.89E-07 4.41 2.03E-05 3.11
80× 80 9.20E-05 2.61 3.90E-04 2.09 2.79E-08 4.37 2.54E-06 3.18
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Summary

We have proved superconvergence of the DG method for
nonlinear hyperbolic conservation laws, under the condition that
|f ′(u)| has a uniform positive lower bound;

Numerical experiments are provided to demonstrate the
theoretical results.

Future work
Superconvergence of DG method for conservation laws in
multidimensional case;

Superconvergence property of the local DG (LDG) method for
nonlinear diffusion problems.
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Thanks for your attention!
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